If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4j^2+43j-11=0
a = 4; b = 43; c = -11;
Δ = b2-4ac
Δ = 432-4·4·(-11)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-45}{2*4}=\frac{-88}{8} =-11 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+45}{2*4}=\frac{2}{8} =1/4 $
| 2.000x+24=4.850 | | 5(x+7)-3x=3(x+5) | | 3x+23=23-3x | | 40=14x-4x | | (1.5+5x)/9=0.5 | | 7n=6/7 | | 55=-5/6x | | -3(4x+3)+5(4x2)=-95 | | 2x+-1+-1=34 | | 2x+-1-1=34 | | 6x-35=19+20-4x | | 5x-4=6+7x | | 10x+1=5x+29 | | 5x-2(2x-1=2(3x4) | | 4w-7+7w-2=180 | | V=(5-2x)(11-2x)(x) | | 4/3t=12-2t | | -5w-3=23 | | +50x+20=90 | | 0.45(t+8)=0.6(t+-3) | | 9f-25.1=28.9 | | 64=8+7w | | 5k-8.6=41.4 | | 4j+4=6+0j | | -10x-1=-141 | | 8d-8=24 | | 5x+3x=15x | | 2x-8=3x+20 | | 28/48=7/x | | 0.4x=-2.6 | | -5/2v+6/5=-7v-1/2 | | 32=9/x |